Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Sci Rep ; 14(1): 2798, 2024 02 02.
Article En | MEDLINE | ID: mdl-38307912

Human genetic studies have revealed rare missense and protein-truncating variants in GRIN2A, encoding for the GluN2A subunit of the NMDA receptors, that confer significant risk for schizophrenia (SCZ). Mutations in GRIN2A are also associated with epilepsy and developmental delay/intellectual disability (DD/ID). However, it remains enigmatic how alterations to the same protein can result in diverse clinical phenotypes. Here, we performed functional characterization of human GluN1/GluN2A heteromeric NMDA receptors that contain SCZ-linked GluN2A variants, and compared them to NMDA receptors with GluN2A variants associated with epilepsy or DD/ID. Our findings demonstrate that SCZ-associated GRIN2A variants were predominantly loss-of-function (LoF), whereas epilepsy and DD/ID-associated variants resulted in both gain- and loss-of-function phenotypes. We additionally show that M653I and S809R, LoF GRIN2A variants associated with DD/ID, exert a dominant-negative effect when co-expressed with a wild-type GluN2A, whereas E58Ter and Y698C, SCZ-linked LoF variants, and A727T, an epilepsy-linked LoF variant, do not. These data offer a potential mechanism by which SCZ/epilepsy and DD/ID-linked variants can cause different effects on receptor function and therefore result in divergent pathological outcomes.


Epilepsy , Neurodevelopmental Disorders , Schizophrenia , Humans , Epilepsy/genetics , Mutation , Neurodevelopmental Disorders/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/genetics
2.
bioRxiv ; 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38260256

Recent advances in AI-based methods have revolutionized the field of structural biology. Concomitantly, high-throughput sequencing and functional genomics technologies have enabled the detection and generation of variants at an unprecedented scale. However, efficient tools and resources are needed to link these two disparate data types - to "map" variants onto protein structures, to better understand how the variation causes disease and thereby design therapeutics. Here we present the Genomics 2 Proteins Portal (G2P; g2p.broadinstitute.org/): a human proteome-wide resource that maps 19,996,443 genetic variants onto 42,413 protein sequences and 77,923 structures, with a comprehensive set of structural and functional features. Additionally, the G2P portal generalizes the capability of linking genomics to proteins beyond databases by allowing users to interactively upload protein residue-wise annotations (variants, scores, etc.) as well as the protein structure to establish the connection. The portal serves as an easy-to-use discovery tool for researchers and scientists to hypothesize the structure-function relationship between natural or synthetic variations and their molecular phenotype.

3.
Brain ; 146(2): 519-533, 2023 02 13.
Article En | MEDLINE | ID: mdl-36256779

Neurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are 'variants of uncertain significance'. To safely enrol patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can 'tolerate' missense variants and which ones are 'essential' and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.


Intellectual Disability , Neurodevelopmental Disorders , Humans , Child , Neurodevelopmental Disorders/genetics , Genetic Testing , Mutation/genetics , Intellectual Disability/genetics , Mutation, Missense
4.
Nat Commun ; 13(1): 3778, 2022 06 30.
Article En | MEDLINE | ID: mdl-35773251

PPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown. Here we use computational, biochemical and functional genetic studies to elucidate the molecular basis of GSK2830371 activity. These data confirm that GSK2830371 binds an allosteric site of PPM1D with high affinity. By further incorporating data from hydrogen deuterium exchange mass spectrometry and sedimentation velocity analytical ultracentrifugation, we demonstrate that PPM1D exists in an equilibrium between two conformations that are defined by the movement of the flap domain, which is required for substrate recognition. A hinge region was identified that is critical for switching between the two conformations and was directly implicated in the high-affinity binding of GSK2830371 to PPM1D. We propose that the two conformations represent active and inactive forms of the protein reflected by the position of the flap, and that binding of GSK2830371 shifts the equilibrium to the inactive form. Finally, we found that C-terminal truncating mutations proximal to residue 400 result in destabilization of the protein via loss of a stabilizing N- and C-terminal interaction, consistent with the observation from human genetic data that nearly all PPM1D mutations in cancer are truncating and occur distal to residue 400. Taken together, our findings elucidate the mechanism by which binding of a small molecule to an allosteric site of PPM1D inhibits its activity and provides insights into the biology of PPM1D.


Neoplasms , Protein Phosphatase 2C , Allosteric Site , Aminopyridines/pharmacology , Dipeptides/pharmacology , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Conformation , Protein Phosphatase 2C/antagonists & inhibitors , Protein Phosphatase 2C/chemistry , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Serine/genetics , Serine/metabolism , Structure-Activity Relationship
5.
PLoS Comput Biol ; 18(3): e1009911, 2022 03.
Article En | MEDLINE | ID: mdl-35275927

All proteomes contain both proteins and polypeptide segments that don't form a defined three-dimensional structure yet are biologically active-called intrinsically disordered proteins and regions (IDPs and IDRs). Most of these IDPs/IDRs lack useful functional annotation limiting our understanding of their importance for organism fitness. Here we characterized IDRs using protein sequence annotations of functional sites and regions available in the UniProt knowledgebase ("UniProt features": active site, ligand-binding pocket, regions mediating protein-protein interactions, etc.). By measuring the statistical enrichment of twenty-five UniProt features in 981 IDRs of 561 human proteins, we identified eight features that are commonly located in IDRs. We then collected the genetic variant data from the general population and patient-based databases and evaluated the prevalence of population and pathogenic variations in IDPs/IDRs. We observed that some IDRs tolerate 2 to 12-times more single amino acid-substituting missense mutations than synonymous changes in the general population. However, we also found that 37% of all germline pathogenic mutations are located in disordered regions of 96 proteins. Based on the observed-to-expected frequency of mutations, we categorized 34 IDRs in 20 proteins (DDX3X, KIT, RB1, etc.) as intolerant to mutation. Finally, using statistical analysis and a machine learning approach, we demonstrate that mutation-intolerant IDRs carry a distinct signature of functional features. Our study presents a novel approach to assign functional importance to IDRs by leveraging the wealth of available genetic data, which will aid in a deeper understating of the role of IDRs in biological processes and disease mechanisms.


Intrinsically Disordered Proteins , Amino Acid Sequence , Genetic Variation/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Protein Conformation , Proteome/genetics
6.
Genet Med ; 24(3): 681-693, 2022 03.
Article En | MEDLINE | ID: mdl-34906499

PURPOSE: Pathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype-phenotype correlations. METHODS: Through an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated. RESULTS: We characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain. CONCLUSION: These genotype-phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences.


Epilepsy , Intellectual Disability , Epilepsy/genetics , Genetic Association Studies , Humans , Intellectual Disability/genetics , Mutation , Phenotype , Receptors, GABA-A/genetics
7.
J Med Chem ; 64(15): 11148-11168, 2021 08 12.
Article En | MEDLINE | ID: mdl-34342224

PRMT5 and its substrate adaptor proteins (SAPs), pICln and Riok1, are synthetic lethal dependencies in MTAP-deleted cancer cells. SAPs share a conserved PRMT5 binding motif (PBM) which mediates binding to a surface of PRMT5 distal to the catalytic site. This interaction is required for methylation of several PRMT5 substrates, including histone and spliceosome complexes. We screened for small molecule inhibitors of the PRMT5-PBM interaction and validated a compound series which binds to the PRMT5-PBM interface and directly inhibits binding of SAPs. Mode of action studies revealed the formation of a covalent bond between a halogenated pyridazinone group and cysteine 278 of PRMT5. Optimization of the starting hit produced a lead compound, BRD0639, which engages the target in cells, disrupts PRMT5-RIOK1 complexes, and reduces substrate methylation. BRD0639 is a first-in-class PBM-competitive inhibitor that can support studies of PBM-dependent PRMT5 activities and the development of novel PRMT5 inhibitors that selectively target these functions.


Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Drug Discovery , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyridazines/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein-Arginine N-Methyltransferases/metabolism , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship
8.
Ophthalmic Genet ; 42(3): 291-295, 2021 06.
Article En | MEDLINE | ID: mdl-33599182

Background: Oculocutaneous albinism (OCA) is a Mendelian disorder characterized by hypopigmentation of the skin, hair, and eyes, hypoplastic fovea, and low vision, known to be caused by mutations in the Tyrosinase (TYR) gene. Among the known TYR variants, some reduce but do not completely eliminate tyrosinase activity, allowing residual production of melanin and resulting in a contradictory assignment as either pathogenic or benign, preventing a precise clinical diagnostic.Materials and Methods: In the present work, we performed Whole Exome Sequencing and subsequent Sanger sequencing in a young male clinically diagnosed with OCA.Results: Whole-exome sequencing analysis revealed the identification of two variants in trans in TYR. The first, corresponds to a known pathogenic variant G47D, while the second S192Y, was considered a polymorphism due to its relatively high frequency in the European population.Conclusion: The lack of other pathogenic variants in TYR, the reported reduced enzymatic activity (ca. 40% respect to wt) for S192Y, together with the structural in-silico analysis strongly suggest that both reported variants are jointly disease-causing and that S192Y should be considered as likely pathogenic, especially when it is found in trans with a null variant.


Albinism, Oculocutaneous/genetics , Monophenol Monooxygenase/genetics , Mutation, Missense/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Albinism, Oculocutaneous/diagnosis , Amino Acid Sequence , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Molecular Sequence Data , Pedigree , Exome Sequencing
9.
iScience ; 24(1): 101935, 2021 Jan 22.
Article En | MEDLINE | ID: mdl-33409479

Genetic variation of the 16p11.2 deletion locus containing the KCTD13 gene and of CUL3 is linked with autism. This genetic connection suggested that substrates of a CUL3-KCTD13 ubiquitin ligase may be involved in disease pathogenesis. Comparison of Kctd13 mutant (Kctd13 -/- ) and wild-type neuronal ubiquitylomes identified adenylosuccinate synthetase (ADSS), an enzyme that catalyzes the first step in adenosine monophosphate (AMP) synthesis, as a KCTD13 ligase substrate. In Kctd13 -/- neurons, there were increased levels of succinyl-adenosine (S-Ado), a metabolite downstream of ADSS. Notably, S-Ado levels are elevated in adenylosuccinate lyase deficiency, a metabolic disorder with autism and epilepsy phenotypes. The increased S-Ado levels in Kctd13 -/- neurons were decreased by treatment with an ADSS inhibitor. Lastly, functional analysis of human KCTD13 variants suggests that KCTD13 variation may alter ubiquitination of ADSS. These data suggest that succinyl-AMP metabolites accumulate in Kctd13 -/- neurons, and this observation may have implications for our understanding of 16p11.2 deletion syndrome.

10.
Brain Commun ; 2(2): fcaa170, 2020.
Article En | MEDLINE | ID: mdl-33241211

Advances in gene discovery have identified genetic variants in the solute carrier family 6 member 1 gene as a monogenic cause of neurodevelopmental disorders, including epilepsy with myoclonic atonic seizures, autism spectrum disorder and intellectual disability. The solute carrier family 6 member 1 gene encodes for the GABA transporter protein type 1, which is responsible for the reuptake of the neurotransmitter GABA, the primary inhibitory neurotransmitter in the central nervous system, from the extracellular space. GABAergic inhibition is essential to counterbalance neuronal excitation, and when significantly disrupted, it negatively impacts brain development leading to developmental differences and seizures. Aggregation of patient variants and observed clinical manifestations expand understanding of the genotypic and phenotypic spectrum of this disorder. Here, we assess genetic and phenotypic features in 116 individuals with solute carrier family 6 member 1 variants, the vast majority of which are likely to lead to GABA transporter protein type 1 loss-of-function. The knowledge acquired will guide therapeutic decisions and the development of targeted therapies that selectively enhance transporter function and may improve symptoms. We analysed the longitudinal and cell type-specific expression of solute carrier family 6 member 1 in humans and localization of patient and control missense variants in a novel GABA transporter protein type 1 protein structure model. In this update, we discuss the progress made in understanding and treating solute carrier family 6 member 1-related disorders thus far, through the concerted efforts of clinicians, scientists and family support groups.

11.
Proc Natl Acad Sci U S A ; 117(45): 28201-28211, 2020 11 10.
Article En | MEDLINE | ID: mdl-33106425

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.


Mutation, Missense/genetics , Proteins/chemistry , Proteins/genetics , Amino Acid Sequence , BRCA1 Protein/chemistry , BRCA1 Protein/genetics , Computational Biology/methods , Humans , Machine Learning , Models, Molecular , Mutation, Missense/physiology , PTEN Phosphohydrolase/chemistry , PTEN Phosphohydrolase/genetics , Protein Conformation , Proteins/physiology
12.
Sci Transl Med ; 12(556)2020 08 12.
Article En | MEDLINE | ID: mdl-32801145

Malfunctions of voltage-gated sodium and calcium channels (encoded by SCNxA and CACNA1x family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF (n = 518) and GOF (n = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCNxA/CACNA1x family genes.


Calcium Channels , Pharmaceutical Preparations , Mutation, Missense/genetics , Phenotype , Sodium
13.
J Biol Chem ; 295(39): 13516-13531, 2020 09 25.
Article En | MEDLINE | ID: mdl-32723867

Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.


Benzimidazoles/pharmacology , Prion Diseases/drug therapy , Prion Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Benzimidazoles/chemistry , Drug Discovery , Drug Evaluation, Preclinical , Humans , Magnetic Resonance Spectroscopy , Prion Diseases/metabolism , Prion Proteins/metabolism , Small Molecule Libraries/chemistry
14.
Nucleic Acids Res ; 48(W1): W132-W139, 2020 07 02.
Article En | MEDLINE | ID: mdl-32402084

Human genome sequencing efforts have greatly expanded, and a plethora of missense variants identified both in patients and in the general population is now publicly accessible. Interpretation of the molecular-level effect of missense variants, however, remains challenging and requires a particular investigation of amino acid substitutions in the context of protein structure and function. Answers to questions like 'Is a variant perturbing a site involved in key macromolecular interactions and/or cellular signaling?', or 'Is a variant changing an amino acid located at the protein core or part of a cluster of known pathogenic mutations in 3D?' are crucial. Motivated by these needs, we developed MISCAST (missense variant to protein structure analysis web suite; http://miscast.broadinstitute.org/). MISCAST is an interactive and user-friendly web server to visualize and analyze missense variants in protein sequence and structure space. Additionally, a comprehensive set of protein structural and functional features have been aggregated in MISCAST from multiple databases, and displayed on structures alongside the variants to provide users with the biological context of the variant location in an integrated platform. We further made the annotated data and protein structures readily downloadable from MISCAST to foster advanced offline analysis of missense variants by a wide biological community.


Mutation, Missense , Protein Conformation , Software , Humans , Internet , Proteins/chemistry , Proteins/genetics
15.
Epilepsia ; 61(3): 387-399, 2020 03.
Article En | MEDLINE | ID: mdl-32090326

OBJECTIVE: Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS: We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS: Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE: Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.


Epileptic Syndromes/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.2 Voltage-Gated Sodium Channel/genetics , NAV1.3 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Sodium Channels/genetics , Age of Onset , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Child , Child, Preschool , Codon, Nonsense , DNA Copy Number Variations , Electroencephalography , Epileptic Syndromes/drug therapy , Epileptic Syndromes/physiopathology , Female , Gain of Function Mutation , Gene Deletion , Gene Duplication , Gene Expression , Gene Expression Regulation, Developmental , Genotype , Humans , Infant , Infant, Newborn , Loss of Function Mutation , Male , Mutation, Missense , NAV1.1 Voltage-Gated Sodium Channel/metabolism , NAV1.2 Voltage-Gated Sodium Channel/metabolism , NAV1.3 Voltage-Gated Sodium Channel/metabolism , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Phenotype , Sodium Channel Blockers/therapeutic use , Sodium Channels/metabolism
16.
Eur J Paediatr Neurol ; 24: 129-133, 2020 Jan.
Article En | MEDLINE | ID: mdl-31928904

The four voltage-gated sodium channels SCN1/2/3/8A have been associated with heterogeneous types of developmental disorders, each presenting with disease specific temporal and cell type specific gene expression. Using single-cell RNA sequencing transcriptomic data from humans and mice, we observe that SCN1A is predominantly expressed in inhibitory neurons. In contrast, SCN2/3/8A are profoundly expressed in excitatory neurons with SCN2/3A starting prenatally, followed by SCN1/8A neonatally. In contrast to previous observations from low resolution RNA screens, we observe that all four genes are expressed in both excitatory and inhibitory neurons, however, exhibit differential expression strength. These findings provide molecular evidence, at single-cell resolution, to support the hypothesis that the excitatory/inhibitory (E/I) neuronal expression ratios of sodium channels are important regulatory mechanisms underlying brain homeostasis and neurological diseases. Modulating the E/I expression balance within cell types of sodium channels could serve as a potential strategy to develop targeted treatment for NaV-associated neuronal developmental disorders.


Brain/metabolism , Developmental Disabilities/metabolism , Neurons/metabolism , Voltage-Gated Sodium Channels/metabolism , Animals , Developmental Disabilities/genetics , Humans , Mice , Voltage-Gated Sodium Channels/genetics
17.
Trends Neurosci ; 41(7): 442-456, 2018 07.
Article En | MEDLINE | ID: mdl-29691040

Advances in gene discovery for neurodevelopmental disorders have identified SCN2A dysfunction as a leading cause of infantile seizures, autism spectrum disorder, and intellectual disability. SCN2A encodes the neuronal sodium channel NaV1.2. Functional assays demonstrate strong correlation between genotype and phenotype. This insight can help guide therapeutic decisions and raises the possibility that ligands that selectively enhance or diminish channel function may improve symptoms. The well-defined function of sodium channels makes SCN2A an important test case for investigating the neurobiology of neurodevelopmental disorders more generally. Here, we discuss the progress made, through the concerted efforts of a diverse group of academic and industry scientists as well as policy advocates, in understanding and treating SCN2A-related disorders.


NAV1.2 Voltage-Gated Sodium Channel/genetics , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Animals , Humans , Neurodevelopmental Disorders/drug therapy
18.
Sci Transl Med ; 10(431)2018 03 07.
Article En | MEDLINE | ID: mdl-29515000

Glycogen synthase kinase 3 (GSK3), a key regulatory kinase in the wingless-type MMTV integration site family (WNT) pathway, is a therapeutic target of interest in many diseases. Although dual GSK3α/ß inhibitors have entered clinical trials, none has successfully translated to clinical application. Mechanism-based toxicities, driven in part by the inhibition of both GSK3 paralogs and subsequent ß-catenin stabilization, are a concern in the translation of this target class because mutations and overexpression of ß-catenin are associated with many cancers. Knockdown of GSK3α or GSK3ß individually does not increase ß-catenin and offers a conceptual resolution to targeting GSK3: paralog-selective inhibition. However, inadequate chemical tools exist. The design of selective adenosine triphosphate (ATP)-competitive inhibitors poses a drug discovery challenge due to the high homology (95% identity and 100% similarity) in this binding domain. Taking advantage of an Asp133→Glu196 "switch" in their kinase hinge, we present a rational design strategy toward the discovery of paralog-selective GSK3 inhibitors. These GSK3α- and GSK3ß-selective inhibitors provide insights into GSK3 targeting in acute myeloid leukemia (AML), where GSK3α was identified as a therapeutic target using genetic approaches. The GSK3α-selective compound BRD0705 inhibits kinase function and does not stabilize ß-catenin, mitigating potential neoplastic concerns. BRD0705 induces myeloid differentiation and impairs colony formation in AML cells, with no apparent effect on normal hematopoietic cells. Moreover, BRD0705 impairs leukemia initiation and prolongs survival in AML mouse models. These studies demonstrate feasibility of paralog-selective GSK3α inhibition, offering a promising therapeutic approach in AML.


Enzyme Inhibitors/therapeutic use , Glycogen Synthase Kinase 3/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Dipeptides/chemistry , Dipeptides/metabolism , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3/metabolism , Humans , Mutagenesis, Site-Directed , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism , U937 Cells , beta Catenin/genetics , beta Catenin/metabolism
19.
ACS Chem Biol ; 13(4): 1038-1047, 2018 04 20.
Article En | MEDLINE | ID: mdl-29485852

Schizophrenia is a severe neuropsychiatric disease that lacks completely effective and safe therapies. As a polygenic disorder, genetic studies have only started to shed light on its complex etiology. To date, the positive symptoms of schizophrenia are well-managed by antipsychotic drugs, which primarily target the dopamine D2 receptor (D2R). However, these antipsychotics are often accompanied by severe side effects, including motoric symptoms. At D2R, antipsychotic drugs antagonize both G-protein dependent (Gαi/o) signaling and G-protein independent (ß-arrestin) signaling. However, the relevant contributions of the distinct D2R signaling pathways to antipsychotic efficacy and on-target side effects (motoric) are still incompletely understood. Recent evidence from mouse genetic and pharmacological studies point to ß-arrestin signaling as the major driver of antipsychotic efficacy and suggest that a ß-arrestin biased D2R antagonist could achieve an additional level of selectivity at D2R, increasing the therapeutic index of next generation antipsychotics. Here, we characterize BRD5814, a highly brain penetrant ß-arrestin biased D2R antagonist. BRD5814 demonstrated good target engagement via PET imaging, achieving efficacy in an amphetamine-induced hyperlocomotion mouse model with strongly reduced motoric side effects in a rotarod performance test. This proof of concept study opens the possibility for the development of a new generation of pathway selective antipsychotics at D2R with reduced side effect profiles for the treatment of schizophrenia.


Antipsychotic Agents/therapeutic use , Receptors, Dopamine D2/drug effects , beta-Arrestins/metabolism , Animals , Diagnostic Imaging/methods , GTP-Binding Proteins/antagonists & inhibitors , Humans , Locomotion/drug effects , Mice , Schizophrenia/drug therapy , Signal Transduction/drug effects , beta-Arrestins/antagonists & inhibitors
20.
ACS Cent Sci ; 3(9): 1006-1014, 2017 Sep 27.
Article En | MEDLINE | ID: mdl-28979942

Histone deacetylase 6 (HDAC6) function and dysregulation have been implicated in the etiology of certain cancers and more recently in central nervous system (CNS) disorders including Rett syndrome, Alzheimer's and Parkinson's diseases, and major depressive disorder. HDAC6-selective inhibitors have therapeutic potential, but in the CNS drug space the development of highly brain penetrant HDAC inhibitors has been a persistent challenge. Moreover, no tool exists to directly characterize HDAC6 and its related biology in the living human brain. Here, we report a highly brain penetrant HDAC6 inhibitor, Bavarostat, that exhibits excellent HDAC6 selectivity (>80-fold over all other Zn-containing HDAC paralogues), modulates tubulin acetylation selectively over histone acetylation, and has excellent brain penetrance. We further demonstrate that Bavarostat can be radiolabeled with 18F by deoxyfluorination through in situ formation of a ruthenium π-complex of the corresponding phenol precursor: the only method currently suitable for synthesis of [18F]Bavarostat. Finally, by using [18F]Bavarostat in a series of rodent and nonhuman primate imaging experiments, we demonstrate its utility for mapping HDAC6 in the living brain, which sets the stage for first-in-human neurochemical imaging of this important target.

...